

Numerical Modeling of Seabed Gouging by Ice Masses

and soil-pipe interaction

Hossein Fadaifard, MSc John Tassoulas, Ph.D.

Department of Civil, Architectural, and Environmental Engineering
The University of Texas at Austin

February 14, 2013

BSEE Seabed Gouging 1 / 2:

Outline

Motivation

Seabed scour Pipe Interaction

Numerical Modeling

Fluid-Structure Interaction (FSI)
Rigid Cylinder Penetration

Numerical Examples and Remarks

Ridge Scour

Appendix

Ridge

Arctic Ocean

(Courtesy of Polar Science Center at Washington University)

- Home to large untapped reserves
 - 13% oil reserves [1]
 - 30% gas reserves [1]
- Marine pipelines for transportation of fluids
 - Install on seabed
 - Trench and/or embed into seabed
 - Less susceptible to man-made hazards
 - Susceptible to seabed gouging by ice masses

BSEE Seabed Gouging 3 / 2

- Ice features drifting in Arctic environment.
- Come in contact with seabed in shallower waters.
- Scour the seabed for several kilometers.

- Scour seabed and remold the seabed surface.
- Limited information available about actual process.
- Move at speeds of 0.1 m/s.
- Scour deformation occurs in undrained condition.

(a) Isometric View

(b) Top View

- Gouge depths typically rarely exceeding 1m in depth.
 - Canadian Beaufort Sea (1970s): 2.5m [4]
 - Canadian Beaufort Sea (1995): 0.3m [2]
 - Grand Banks (2004): 0.3m [3]
- Inherently a 3-dimensional problem.

Seabed Scour and Pipe Interaction

- Trench and embed pipelines to prevent contact with ice ridges.
- Fill trench back with infill.
- Deeper trenches more expensive.

BSEE Seabed Gouging 7 / 21

Seabed Scour and Pipe Interaction

- Indirect transfer of forces to pipeline
- Concern about the safety of pipes.
- Study behavior of pipes under extreme loading due to ridges.

BSEE Seabed Gouging 8 / 21

Classical Approach: Soil-Structure Interaction (SSI)

Seabed scour modeling:

- Soil modeled as a porous medium.
 - Accurate model for soil.
 - Includes load-history dependency behavior of soil.
- Large deformations require re-meshing.
 - Computationally expensive.
 - Solution projection between meshes deteriorates nonlinear convergence.
 - Difficult to parallelize.
- Requires solving a nonlinear contact problem.

BSEE Seabed Gouging 9 / 2

Current Approach: Fluid-Structure-Object Interaction

- Model soil as a highly viscous non-Newtonian fluid with a "yield" stress.

 Herschel-Bulkley model used to approximate soil behavior.

$$\boldsymbol{\sigma}^f = 2\mu^f(\dot{\gamma})\,\dot{\boldsymbol{\epsilon}} - p\mathbf{I},\tag{1}$$

Pipe Penetration

Ridge Scour

Ridge Scour

Extreme cases:

- Pipe artificially fixed in place.
- Pipe artificially allowed to freely "float".
- Pipe allowed to displace, attached to spring.

Seabed scour - "floating" pipe

Seabed scour – Pipe with artificial spring

▶ Pipe with spring

3-dimensional Scour (without pipe)

▶ 3d Scour

Concluding Comments

- Approximating soil behavior using Herschel-Bulkley model promising.
- Problem is very computationally demanding.
 - \bullet \sim 36 hr for a typical 2D run on a single core.
 - Projected run time of 5-10 days for 3D analysis on TACC (16 cores).
- Currently working on parametric studies.

Sources I

D. L. Gautier, K. J. Bird, R. R. Charpentier, A. Grantz, D. W. Houseknecht, T. R. Klett, J. K. Moore, T. E.and Pitman, C. J. Schenk, J. H. Schuenemeyer, K. Sorensen, M. E. Tennyson, Z. C. Valin, and C. J. Wandrey. Assessment of undiscovered oil and gas in the arctic. *Science*, 324:1175 – 1179, 2009.

Arnaud Héquette, Marc Desrosiers, and Peter W. Barnes.

Sea ice scouring on the inner shelf of the southeastern canadian beaufort sea. $Marine\ Geology,\ 128(3-4):201-219,\ 1995.$

Tony King, Ryan Phillips, John Barrett, and Gary Sonnichsen. Probabilistic pipeline burial analysis for protection against ice scour. *Cold Regions Science and Technology*, 59(1):58 – 64, 2009.

P. Wadhams.

Ice in the Ocean. CRC PressINC. 2000.

Application: Ridge scour

Table 1: Properties used for preliminary runs of ridge scour

Scour depth	1 m.
Ridge base width	10 m.
Ridge speed	0.2 m/s.
Attack angle	30.5 deg.
pipe diameter	24 in.
Yield stress	1765 Pa.
Yield strain-rate	0.024 1/s
soil mass density:	1400 kg/m3
water mass density:	1000 kg/m3
water dyn. viscosity:	1e-3 kg/m.s

BSEE Seabed Gouging 20 / 21

Ridge scour: Case I with no gravity

▶ No gravity

Figure 1: Case I – Seabed perturbation (gravity off)

BSEE Seabed Gouging 21 / 21